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RESONANCES AND ASYMPTOTIC TRAJECTORIES IN HA~ILTONIAN SYSTEMS* 

A.P. MARKEYEV 

The existence of motions asymptotic to the equilibrium state of a 
Hamiltonian system with an arbitrary finite number of degrees of freedom 
is investigated. It is assumed that the Hamiltonian function is 
analytical in the neighbourhood of the equilibrium and is either 
time-periodic or time-independent. The characteristic exponents of the 
linearized equations of motion are purely imaginary and a simple third- 
or fourth-order resonance is observed. The sufficient conditions for 
asymptotic motions to exist are derived, and their approximate 
analytical representation is constructed in a fairly small neighbourhood 
of the position of equilibrium. 

Assume that the motion of a system with n degrees of freedom is described by the 
following canonical differential equations 

&j _ afl 
dt-ap,’ 

dPj 

dt= 
--f+ (j=1,2,...,n) 

3 

and gi = pj = 0 is a positionof equilibrium. The solution ~1 = fr (t), pj = gj (t) of Eqs.(l) 
that does not vanish identically is said to be asymptotic to the solution qj =pj = 0 if 
lim fl (t) = lim gi (t) = 0 as 1 -+ + bs or t-t-w. In the first case the solution is called 
of type a, and in the second case of type a_. 

A well-known classical algorithm /l, 2/ provides sufficient conditions for the solutions 

at and a_ to exist and generates them in the form of series. One of the main conditions 
for the algorithm to be applicable is that the linearized system of Eqs.(ll has at 
least one non-zero characteristic value. In Hamiltonian systems, characteristic values exist 
in pairs ixj (i = I,Z,...,n), and therefore the theory of Lyapunov and Poincare is applicable 
to (1) only if the equilibrium is unstable in the first (linear) approximation. In what 
follows we will assume that the equilibrium is stable to a first approximation. The 
Hamiltonian H is assumed to be either Zn-periodic in t or time-independent in a sufficiently 
small neighbourhood of the point Qj = pi = 0. 

Asymptotic trajectories of conserative systems were studied in /3-5/ in connection with 
the inversion of the Lagrange theorem of stability of equilibria. Some results of these 
studies were extended in /6/ to non-natural systems. Asymptotic motions for Hamiltonian 
systems with one degree of freedom and a 2n-periodic Hamiltonian were studied in 17, 8/ for 
the case of zero characteristic values; . . motions asymptotic to stable equilibria in the linear 
approxrmation for an anutonomous Hamiltonian system with two degrees of freedom were studied 
in /9/. The trajectories asymptotic to the periodic trajectories of an autonomous Hamiltonian 
system with two degree of freedom were studied in /lo/. 

In this paper we consider the existence and analytical struture of solutions asymptotic 
to the equilibrium qj= pj = 0 of system (1) for an arbitrary number of degrees of freedom 
n. We assume that the characteristic exponents *ihi (i = 1, 2, . . ., n) of the linearized 
system are purely imaginary and there are no resonances to second order inclusive, i.e., 
equality 

the 

k,h, + k&, i- . . . + k,,L = N, (2) 

where N is an integer (N = 0' if H is time-independent), 
of the moduli of which is 1 or 2. 

cannot hold for integer k,,the sum 

With appropriately chosen variables 
hood of the point 

Qj* Pi, 
gj = pr = (I 

the Hamiltonian function in the neighbour- 
can be represented in series form 

(3) 
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where ellipsis denotes the collection of monomials of higher than second degree in q,,pl(, r7 
1, 2, . . .) n) with 2n-periodic coefficients. 

We will consider simple third- and fourth-order resonances, when equality (2) is satisfied 
only for one combination of non-negative integers kj which sum to 3 or 4. 

With third- or fourth-order resonances, we can apply a nearly identical real change of 
variables 71~ nj +Elr Ilt which is 2n-periodic in t and analytical in fj, ?I to reduce the 
Hamiltonian (3) to the form /11/ 

H= J”jP, + 
j;?l 

2 c,lP,P1+p:“*~la...~(osine+Scos8)+,.. 
i,j-l(rcf) 

(e = k,%i -I- k.20, + . f . + f&B, - Nt) 

where Ctjt 0, and 6 are constants, and the ellipsis denotes the collection of terms of 

higher than fourth degree in Ej = I/zi;;- sin %j* Qj = r/G COS et (1 = 1, 2, . . ., n) with 2n-periodic 
coefficients. 

We make the canonical change of variables ej,p, -..~,,r~: 

%j = qj Jr hot + %j*, )Sj = W, 
(k,e,* 4- k,e,* + . . . + k,e,* = e*, Sin %* = -6 (ua + 6e)-s, 

cos %” = CT (82 + 62)-‘/t) 

Here a = (u* + 8*)-l for third-order resonance and a = (e" + @)-l/s for fourth-order 
resonance. 

In the new variables, Eqs.il) are rewritten in the form 

dv, aa 
dt=-G-j-’ 

drj _ aH 
dt--aPj (j L= 1,2, . . ..n) 

Hz 2 
9, I=1 (&S) 

a,jr,rj -t prya. . . r>” sin cp f H* 

(4) 

(5) 

B*is the collection of terms of higher than fourth degree in jf< (I= 1,2, . . ..a). 
Changing if necessary the indexing of hi, we may assume that the following relationships 

from (2) correspond to third-order resonance: 

1) 3h, = N, 2) h, -b 21, = N, 3) hr -I- h, + h, = N (6) 

and the fallowing relationships correspond to fourth-order resonance: 

4) 4?q = N, 5) h, + 3h, = N, 6) 2 (h, + h,) = N (7) 

7) A, + % + 2h, = N, 8) h, + h, + h, + h, = N 

Let us first consider the appLoximate system (41, omitting in the Hamiltonian (5) terms 
of higher than third degree in r/rj for resonances (6) and higher than fourth degree for 

resonances (7). Direct integration leads to the following results for asymptotic solutions 
of the approximate system. 

1) 3h,= N. There exist three one-parameter families of solutions of type o,, in which 

'PI = 22n13 (i = 0, 1, 2), and r1 (t) = 4r, (0) (2 + 3 1/r, (0) t)-%; cp, = 0, r, = 0 (I -b 2), and three one- 

parameter families of solutions of type n_ in which q~, = (3Z+ 2)n/3(Z = 0,2,2); r, (t) = 4r,(O) 
(2 - 3IFFJ$jt)-'; Qj = 0, )*I = 0 (J > 2). 

2) hti_2h,==N. There exist two-parameter families of asymptotic solutions described 
by the formulas 

'pz (t) = vi (0) (2 = 1, 2); r1 (t) = V,r, (t) = rl (0) (1 f J/r, (0) t)+ 

Cpj= 0, rl = 0 (7 > 3); Cp, (0) = -2$J, (0) + '/$ (-1 & 1) 3% + 
2kn 

(k is an integer). 
Here and in what follows, the upper sign corresponds to solutions of type a, and the 

lower sign to solution of type a_. 
3) a, -+- h, + h, = N. There exist three-parameter families of asymptotic solutions a, and 
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‘Pi tt) = cpL (0) (i = 1, 2, 3); rl (t) = r2 (t) = ra (t) = 4r, (0) (2 k 

lfm tP 

‘pj = 0, rj = 0 (i 2 4); ‘pl (0) = - (p2 (O) - TJ (0) + ‘/z (-1 f 

1) JI + 2kn 

(k is an integer). 
4) 4h, = N. If I% I < 1, then there exist four one-parameter families of SOlUtiOnS 

of type a+ in which 'p, = -y14 + in12 (i ~0, 1, 2, 3), y = arcsinn,,; r1 (t) = II (9) (1 + 4 COSVI (9) t)-', 

'pi = (4COS ?)-I U,j In (1 + 4COS yr, (0) t), rj = 0 (i 2 2)~ and four one-parameter families of solutions 

of type a_ in which vpl = y/4 f x/4 -I- b/2 (1 = 0, 1, 2, 3), while r1 (t) = rl (9) (1 - 4 COS I'rr (9) t)-', 

'pi = - (4~03 y)-la,, In (1 - 4cos yr, (0) t)-I, r, = 0 (j > 2). 

5) h,+ 3h, = iv. If I a,, + 3a,, + 9a2z I <3@, there exist two-parameter families 

of asymptotic solutions a, and a_: 

cPz (t) = * (2 COS y)-' (or - sin y)ln (1 f 3')G cos y r, (0)t) + ~~(0) 
(L = 1, 2). 

y = arcsin I(all + 3a,, + 9n,,) I(3 O)l, p1 = (2 I/S 19) (2~,, + 3a,,) 
fb = (2 VSl 9) (an + 64; r1 (t) = l/g2 (t) = r, (0) (1 f 

3 v-2 Cos yr, (0) t)-’ 

‘PI (t) = *t(31/3 cos Y)-' ($j + 3a3j) In (1 f 36:: COS VT,(O) t), rj = 0 
(I > 3) 

'PI (0) = -3% (0) T y +'I, (-1 f l)n + 2kn 

(k is an integer). 
6) 2 (A, + Lr) = N. If 1 $1 + aJ2 + %2 1 < I, there exist two-parameter families of 

asymptotic solutions a, and a_: 

Vi It) = & (2 150s y)-’ (PI - sin y) In (1 * 2 COS yrl (0) t) + Cpi (0) (i = 1, 2) 

Y = arcsin (au + al, + a,,), B1 = 2a,, + ale, fig = aI2 + 2a,, 
rl (t) = r, (t) = rI (0) (1 f 2 cos yr, (0) t)-’ 

Tf (t) E 1 (2 CO9 y)-’ (Ulj + Qj) In (1 * 2 COS yr, (0) t), rj = 0 (j > 3) 
'~1 (0) = --'pz (0) f llzr + '1, (-1 A 1) R + kn 

(k is an integer). 
7) h,+k,-t2h,=N. If 1 alli- a,, f 24, $ us1 + 2a,, + 4as3 1-c 2, there exist three- 

parameter families of asymptotic solutions a, and a_: 

Tpi (t) = t_ (2 COS 7)-l (pi - sin y) ln (1 f 2 COS yrl (0) t) + ‘pi (0) (i = 
1, 2, 3) 

Y = arcsin [l/2 bll + al2 f 2% + a22 f 2a23 + 4a33)k pl = hiI f 

al2 + %a 

BP = =12 + 2a2* + 2a23, I33 = a,, + a23 + 4a33 

fl (t) = r2 (t) = l/de (t) = rl (0) (1 3; 2 cos yr, (0) t)-l 
‘Pi (t) = f (2 COS Y)-’ (%j + $1 + 2Q) h (2 zt 2 Cos yrl (0) t), r, = 0 

0’ B 4) 
‘PI (0) = -02 (@--VP, (0) fy +'I,(--1 f i)n + 2kn 

(k is an integer). 
8) h-h&-l-&+&=N. If Ia,~fa,2+u,3+41,+a~r+~~~4~~~$_~~~fa~r-ta,,l<~, there 

exist four-parameter families of asymptotic solutions a, and a_: 

'pi (t) = f (zcOs$l (28, - sin y) la (I* Cos yr, (0) 1) + ‘pi (0) (i = 
1, 2, 3, 4) 

Y = arcsin (all + alo + al3 + 6, + aa8 + a,, + azr i- faga + aa + a& 

PI = 2all + %a + al3 + a~, fh = ala + 2a2, 4 asa + aa4 
i33 = al3 + aa + 2a33 + aa4, B4 = aI4 + a2, + a, -I- 2~2,~ 
rl (t) = ra (t) = rs (t) = r, (t) = r, (0) (I f co9 yrl (0) t)-l 
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‘PI (t) z j: (COS Y)-’ (%j -t- @PI i- asj + Qj) ln (1 k COS yr, (0) t), rj = 0 

(i > 5) 
‘Pt (0) = -%4 (O) - 'Pa (0) - $4 (0) f Y + ‘~‘3 f---1 rrt: if it -+- 2kn 

(k is an integer). 
These formulas provide an approximate representation of the asymptotic solutions of the 

complete (not the approximate) system of Eqs.f41 in a sufficiently small neigh~urhood of the 
origin. Relying on the structure of approximate solutions and the known results on the 
representation of solutions of differential equations in the neighbourhood of a singular 
point /12/, we can prove the existence of asymptotic solutions of the complete system and 
obtain their analytical representation for large it 1. 

As an example, consider the resonances 3 and 7, restricting the discussion to solutions 
of type a,. Other asymptotic solutions for resonances (6) and (7) are considered similarly. 

For resonance 3, we make the change of variables %I qk, t +xkt yk, It in system (4) using 
the formulas 

r,=ra(4+zi), ~i=cj-+-y,(~=1,2,3) 
rJ = ‘~%j, cpI = y, (j > 41, z = t-l 

(G, isconst, cI = -ca - es + 2kn, k = 0, Ai, &2, . . .) 

where the functions Xr = X1,(z,.z,y), Yk = YE (t,.~., y) can be represented by the series 

which converge in a sufficiently small neighbourhood of the point .zL = yl, = 0 if Izl<T,, 
where zl is a constant; the functions fk(m*mlB. *m2n'(~) are real, continuous, and bounded. 

Omitting the functions Xk, YK on tne right-hand sides of system (9) and introducing a 
new independent variable t! = -111 7, we obtain an auxiliary system of linear differential 
equations with two positive characteristic values equal to 1. In accordance with the standard 
algorithm /12/, we can assert that system (9) has a one-parameter family of solutions which 
can be represented by the series 

which converge for IT /<to, \c /<c,;$ is a sufficiently small number, c is a constant par- 
ameter, and the functions k~m*m*) (r) have the property lim k(m*llil) (r)rB -_ 0 as T +O (9 = const> 

0). 
In the variables rkr fpk, these solutions correspond to a three-parameter family of 

asymptotic solutions of type a, (with the parameters ca,e,,c). For sufficiently large t, 

where %, x, and gk are functions of t, C8> c31 c uniformly bounded for sufficiently large 
t. 

In the case of resonance 7, we make the change of variables rH;,cpPkr t +xt,yk,-c in system 
(4) using the formulas 
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e = t-'/d (i = 1, 2; 1 = 1, 2, 3; j 2 4) 

(cl i.S const, c1 = -ca - 2c, - y + 2kn, k = 0, &l, 42, . . .). 

Rewriting system f4) in the new variables and transforming it (as in the case of reson- 
ance 3) into an auxiliary system of linear differential equations, we find that the latter 
has two positive characteristic values, 1 and 4. Therefore /12/, there exists a one-parameter 
family of solutions zk(z), yr(r) representable by convergent series similar to series (10) 
(rm+m, is replaced by r"'+*"'l). In the variables rL,Tk, these solutions correspond to a 
three-parameter family of asymptotic solutions of type a, (with the parameters ca,cl and c). 

Note that for resonance 7 (and also for other fourth-order resonances (7)), the order of 
decrease of .zkrRk for large t is not less than tl'. (unlike the third-order resonances (61, 
when zK,gx for large t are of order not less than t-l). 
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